Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction

نویسندگان

چکیده

Building energy efficiency is vital, due to the substantial amount of consumed in buildings and associated adverse effects. A high-accuracy prediction model considered as one most effective ways understand building efficiency. In several studies, various machine learning models have been proposed for However, existing are based on classical approaches small datasets. Using a dataset inefficient may lead poor generalization. addition, it not common see studies examining suitability methods forecasting consumption during early design phase so that more energy-efficient can be constructed. Hence, these purposes, we propose multilayer extreme (MLELM) annual consumption. Our MLELM fuses stacks autoencoders (AEs) with an (ELM). We designed autoencoder ELM concept, used feature extraction. Moreover, were trained layer-wise manner, employed extract efficient features from input data, was using least squares technique fast speed. decision making. this research, large residential capture sizes. compared other commonly predicting From results, validated outperformed comparison prediction. experiments study, identified predictive use before construction, which make informed decisions about, manage, optimize construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Energy Consumption Prediction: An Extreme Deep Learning Approach

Building energy consumption prediction plays an important role in improving the energy utilization rate through helping building managers to make better decisions. However, as a result of randomness and noisy disturbance, it is not an easy task to realize accurate prediction of the building energy consumption. In order to obtain better building energy consumption prediction accuracy, an extreme...

متن کامل

Efficient smile detection by Extreme Learning Machine

Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning M...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

Ensembles of extreme learning machine networks for value prediction

Value prediction is an important subproblem of several reinforcement learning (RL) algorithms. In a previous work, it has been shown that the combination of least-squares temporal-difference learning with ELM (extreme learning machine) networks is a powerful method for value prediction in continuous-state problems. This work proposes the use of ensembles to improve the approximation capabilitie...

متن کامل

Application of Extreme Learning Machine Method for Time Series Analysis

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15249512